Home Work #1

Problems 1-9, 1-10, 2-8, 2-12, 2-13 from the book and

#1

Consider a gas which obeys the Dieterici equation of state

\[p = \frac{nRT}{V - nb} \exp\left(- \frac{na}{RTV} \right), \]

where \(p \) is pressure, \(V \) is volume, \(T \) is the absolute temperature, \(n \) is the number of moles, \(R \) is the gas constant, and \(a \) and \(b \) are material constants. Show that the pressure, volume, and temperature at the critical point are

\[p_c = \frac{a}{4e^2b^2}, \quad V_c = 2nb, \quad T_c = \frac{a}{4Rb}, \]

and rewrite this equation of state in a form which shows the law of corresponding states.